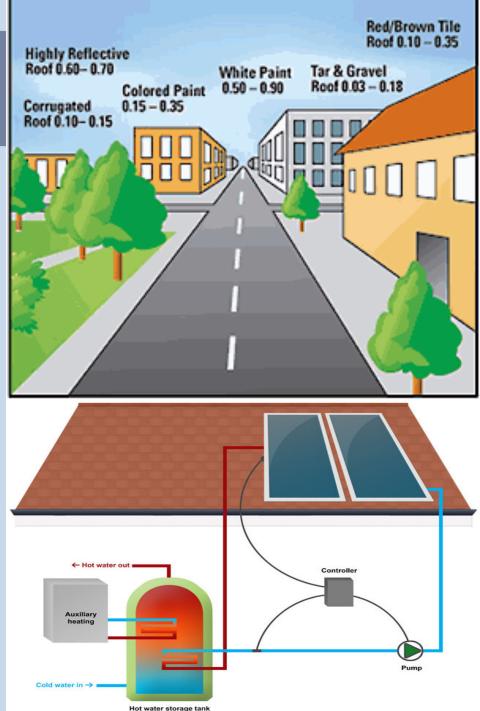
Impact of Cool Roofs on the Performance of Solar Water Heaters

Professor Xiaohua Xia

Centre of New Energy Systems University of Pretoria

April 2013


University of Pretoria

Agenda

I. IntroductionII. Existing studiesIII. Project planIV. OutcomesV. Conclusion

I. Introduction

- Cool roof: a kind of reflexive roof
 - Reduce the effects of solar radiation on building interiors,
 - lowering summer cooling loads and thus reduce air conditioning expenses
 - Purpose of study:
 - To investigate the effect of cool roofs on the solar water heating system performance in South Africa (e.g. solar incidence, usage,..., are different with others,)

Cool roofs:

- reflect most of the incident sunlight
- efficiently emit some of the absorbed radiation back into the atmosphere instead of transferring it to the building
- reduce air temperatures in surrounding areas in summer due to the reflection and emission of absorbed radiation as infrared radiation
- Cool roof & solar system: cool roofs reflect sunlight while solar panels absorb it;
 - cool roofs reflect light to the panels from all directions
 - Improved reflected and diffuse radiation incident on the collector
 - collector efficiency due to reduced temperatures in the vicinity of the collector
 Electrical, Electronic & Computer Engineering

II Existing studies

- Different kinds of sustainable roofs exit (white roofs, green roofs, and roofs with solar panels and/or solar hot water systems)
- It is widely acknowledged in the United States, that highly reflective roofs provide energy cost savings
- Advanced Powering Services Inc. (California) installed a cool roof/solar panel test site on the roof of a local industrial building:
 - reports that the cool roofs increase the energy output of the solar panels

- physical principles govern the technology of solar thermal collectors are:
 - Heat loss is predominantly governed by the thermal gradient between the temperature of the collector surface and the ambient temperature
 - Efficiency of a solar thermal collector is directly related to heat losses from the collector surface.
- Comparison of Traditional and Cool Roof Options is shown in the following table

Comparison of Traditional and Cool Roof Options

	Warmer Roof Options	Cooler Roof Options
	Built-up Roof	Built-up Roof
	•dark gravel	•white gravel
	•smooth asphalt surface	 gravel and cementitious coating
	•aluminium coating	 smooth surface with white roof coating
	Single-Ply Membrane	Single-Ply Membrane
	Black (PVC)	•White (PVC)
		Colour with cool pigments
	Modified Bitumen	Modified Bitumen
	With mineral surface cap sheet (SBS, APP)	White coating over a mineral surface (SBS, APP)
T	Metal Roof	Metal Roof
	Unpainted, corrugated	•White painted
	Dark-painted, corrugated	 colour with cool pigments
	Asphalt Shingle: Black or dark brown with	Asphalt Shingle: White (light gray); or Medium gray
	conventional pigments	or brown with cool pigments
	Liquid Applied Coating: Smooth black	Liquid Applied Coating: Smooth white; Smooth, off-
-		white; Rough white
	Concrete Tile	Concrete Tile:
	•Dark colour with conventional pigments	•White; colour with cool pigments
	Clay Tile:	Clay Tile:
	•Dark colour with conventional pigments	•White Terra cotta (unglazed red tile)
	Wood Shake: Painted dark colour with	Wood Shake:
-	conventional pigment	•Bare
Jni		

III. Project plan

- Installation of cool roofs and solar thermal systems
- Experiments and monitoring of solar system performance
- Solar thermal system optimal design under cool roofs: for new system design; possibility to downscale systems for less investment due to improved thermal efficiency
- Solar thermal system optimal operation under cool roofs: for existing solar systems; optimised electrical load operation

Materials needed

- Cool roof material
- Two low-pressure solar water heating systems
- Two high-pressure solar water heating systems
- Temperature sensors/Thermocouples
- Flow meters
- Voltmeters
- Ammeters
- Pyranometers
- Data loggers

Details

- Part of the building roof will be retrofitted with cool roofing material
- Four experimental models will be set up on the roof
- Evacuated tubes and/or flat plate collectors will be tested
- Data sensing and collection systems be installed
- A control model will be developed to simulate the performance of the system Electrical, Electronic & Computer Engineering

- Different tilt angles and orientations will be tested
- Electricity output, pressure, flow rate and temperature changes of water will be monitored
- Thermocouples will be used to sense the temperature of the water in the tank as well as ambient temperature
- System efficiency; load calculation; for different combinations of system components
- Thermal Analysis of the storage systems and economic analysis will be done
- Optimal system designs
- Optimal electric load operation (back up, auxiliary, Electrical, Electronic & Computer Engineering

Validity/Repeatability/Reproducibility

- use of experimentally proven data;
- use of control experiments;
- repetition of experiments in different conditions
- trial runs of systems
- assimilation of critiques obtained from active participation in conferences, departmental presentations, seminars, and journal paper writings;
- Reference to the internationally standards (ISOs).

Project management

- Team at the EEDSM Hub to work on the project
- EEDSM's Energy lab to be installed the testing systems
- Key team members:
 - Prof X Xia and 1 faculty member, 1 PhD student, 1
 Master's, plus
 - supporting staff and students

IV Outcomes

- Support for government policy formulation with regards to cool roof and solar water heating system in RSA
- Recommendations/Results on the use of a combination of cool roofs and solar modules
- Efficiency and reliability of the system
- Contributions of such a system towards the energy demand per household
- Contributions of such a system towards peak energy demand in the country
- Economic analysis of the system
- Publications

THANK YOU!

QUESTIONS?