

Energy Efficiency Initiatives in Commercial Buildings

Sanjay Seth Energy Economist Bureau of Energy Efficiency Government of India

Overview of India's Commercial Building Sector

Growth in the Indian Building Sector

Commercial Buildings Floor Area - Growth Forecast

- Currently, ~ 659 million m² (USAID ECO-III Internal Estimate Using MOSPI, CEA and Benchmarked Energy Use data)
- In 2030,~ 1,900 million m² (estimated)*
 - > 66% building stock is yet to be constructed

Electricity Growth in Commercial Sector

Typical Building Energy Use

- Lighting and Air Conditioning account for over 80% of energy end use in a typical commercial building in India while in residential building fan and lighting load are predominant .
- Most of the existing lighting and air conditioning systems are not very efficient, leaving a wide scope for improvement in energy performance.
- Overall the energy savings estimates for the commercial and residential buildings vary between 30-70%.
- Challenge before India is to plan and implement energy efficiency measures during the early stages of growth in the building sector .

CLIMATIC ZONES OF INDIA

LEGENDS

HOT-DRY WARM-HUMID

COMPOSITE

TEMPERATE

COLD

.. \$

Five climate zones:-

- 1. Composite (Delhi)
- 2. Hot Dry (Ahmedabad)
- **3. Hot Humid (Kolkata)**
- 4. Moderate (Bangalore)
- 5. Cold (Shillong)

Energy Conservation Building Code

- ECBC covering the following components prepared:
 - Building Envelope (Walls, Roofs, Windows)
 - Lighting (Indoor and Outdoor)
 - Heating Ventilation and Air Conditioning (HVAC) System
 - Solar Hot Water Heating
 - Electrical Systems
 - ECBC finalized after extensive consultation
 - Voluntary introduction of ECBC in May 2007; mandatory after capacity building and implementation experience
 - Impact of ECBC Reduced Energy Use for buildings
 - National Benchmark ~ 180 kWh/m²/year
 - ECBC Compliant building ~ 110 kWh/m²/year

Roadmap towards implementation

- Development of ECBC training package covering the various aspects of the code
- Development of ECBC User Guide
- Conformance Check Tool developed
- Implementation of ECBC
- Amendment of ECBC to suit local & regional climatic condition
- Notification of ECBC in progress
- Integration of ECBC in building bye-laws
- Modification in schedule of rates
- Harmonization with NBC (National Building Code)

Challenges to ECBC implementation

- Adoption
 - State by state adoption after mandatory requirement
- > Implementation
 - Lack of expertise amongst architects, engineers and contractors
 - Lack of availability of equipment with prescribed efficiency levels
 - Lack of third party objective testing facilities that measure product efficiency with standard test procedures.
 - Enforcement
 - Enforcement at urban local bodies
 - Lack of expertise and human resources
 - Occupancy approval does not include all building systems

Projected growth in Floor Space & Energy Consumption- 'Business as Usual' scenario

alle 1	
11	
3.3	
noment and build	
\	

Year	Floor space (sq.m)	Energy consumption (BU)
2005	425	36
2012	745	166
2017	1114	240

Source : "Interim Report of the Expert Group on Low Carbon Strategies for inclusive Growth

Projected savings in new built up spaces

Cool Roofs – roadmap ahead

- The Energy Conservation Building Code (ECBC) defines prescriptive requirements for cool roofs.
 - Promotion of Cool Roofs would include:
 - Building parameters
 - Application options- materials and their energy performance
 - Implementation options- policy, promotional
 - Various technical and design considerations applicable.
 - Cool roofing, application, and maintenance issues.
 - Providing details of cool roof technology and application, and access to the research carried out.
 - Analysis of the energy savings on account of application of cool roofs

www.bee-india.nic.in

