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1. INTRODUCTION 
 

It is considered that the dark surface of buildings 
and pavements is one of the major heat source 
causing the urban heat islands, as it absorbs more 
heat from the sun. In Japan, several kinds of cool 
pavement have been developed and their cooling 
effects were investigated. However, they have never 
been widely used in practice due to a limited effect in 
mitigating urban thermal environment. 

Some of the heat island mitigation studies deal with 
the albedo increase of road and building surfaces 
(Sailor, 1995). It is not difficult to raise the albedo of 
the building roof as it can be attained by bright colored 
painting. For pavements, however, the brighter 
surface is not allowable for reasons of driving safety 
and visibility of white line, unless the brightness is less 
than that of the conventional asphalt and concrete 
pavements. 

In this study, a new type of pavement is developed 
to satisfy both high albedo and low brightness by 
introducing the paint coating technology. By applying 
newly developed durable paint coating with high 
albedo and low brightness to the conventional asphalt 
pavement, the effectiveness of reducing pavement 
temperature and sensible heat flux is investigated by 
field measurements. Then, the impact of introducing 
high albedo pavement on the overall canopy albedo, 
canopy surface temperature and energy balance was 

investigated by applying canopy energy balance 
model in a real urban canopy setting. 
 
2. DEVELOPMENT 
 
2.1 Concept 

A new type of pavement is developed to satisfy both 
high albedo and low brightness with the innovative 
paint coating technology. The function of this 
pavement is based on a thin paint coating on the 
surface of the conventional dark asphalt pavement, 
which gives quite high reflectivity for the near infrared 
and low reflectivity for the visible (Figure 1). This 
results in the dark colored pavement surface while 
achieving much higher albedo. The fine hollow 
ceramic particles are included in the paint to expect 
additional effects on reducing thermal conduction and 
heating of the coat. 

As the high brightness of road surfaces deteriorates 
the visibility of painted lane markings, the target 
brightness as represented by the L* value (a 
brightness index) is set to approximately 40 and 
under. 
 
2.2 Results of laboratory experiment 

In the laboratory experiments, trial paint coatings of 
more than a hundred types with the combination of 
different pigments and modifiers were tested. By this 
procedure, we found some types of pigment and paint 
coating structure are effective in achieving higher 
reflectivity, lower brightness and suppressing the 
surface temperature. 

The reflectivity is measured for a number of metal 
plates coated with different types of paint. The highest 
albedo was more than 50% with the L* value around 
40. Figure 2 indicates the reflectivity with wavelength 
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for selected trial paint coatings. The reflectivity is low 
for the visible and it changes significantly across the 
wavelength 750nm, achieving stably high reflectivity 
beyond it. The results indicate that the average 
reflectivity of No.113, for example, is 86% for the near 
infrared (750-2100nm wavelength) and 23% for the 
visible (350-750nm). The albedo and the L* value of 
those selected coatings range from 44 to 51% and 37 
to 41, respectively. 

The trial plates underwent the ultra-violet radiation 
exposure test, which enables the evaluation of 
changes in color, brightness and reflectivity after the 
exposure to the ultra-violet radiation for the duration 
equivalent to 3,000 hours. It is found that the changes 
in albedo and the L* value are very limited. 
 
2.3 Field measurement 

The temperatures of asphalt coated by selected 
paints were measured in the field yards located in 
Tsukuba and Okinawa, the latter has been exposed to 
larger solar radiation. In the Okinawa field 
measurement, test pieces with dimensions of 30cm 
square and 5cm thick were placed on existing asphalt 
surfaces. The surface temperature was continuously 
measured using thermocouples. 

Figure 3 summarizes the relation between the L* 
value and corresponding albedo for each coating of 
the test piece. Two prototypes are the initially 
developed coatings, and other circles represent 

further developed test coatings. Blacked circles are 
considered to have high quality in terms of brightness 
and albedo. The maximum reduction of surface 
temperature for each piece (∆Ts) from the 
conventional asphalt pavement on a sunny clear day 
(24th of July, 2003) was plotted against the L* value 
(Figure 4). It is judged that pieces labeled as No.104, 
105, 113 and 120 exhibit relatively high performance 
in reducing the surface temperature. 

Another field measurement has been conducted in 
Tsukuba City located about 50 km north-east of Tokyo. 
Larger test pieces with more realistic layered structure 
were installed as shown in Figure 5. Meteorological 
elements such as solar radiation, atmospheric 
radiation, air temperature, relative humidity and wind 
velocity at a height of 300 cm above the pavement 
were measured along with the substrate temperatures 
at several depths in the pavement. 

It is found that the paint-coated asphalt pavement 
shows about 15°C lower surface temperature than 
that of the conventional one at the maximum (Figure 
6). It must be noted that even in the nighttime the 
surface of the paint-coated asphalt is cooler for more 
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Fig.3. Relation between L* value and albedo 
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Fig.4. Relation between L* value and surface 

temperature reduction (∆Ts) 
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Fig.6. Surface temperature variation of conventional 
and developed asphalt pavement in August, 2003. 
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Fig.7. Surface temperature variation of conventional 
and developed asphalt pavement in January, 2003. 



 

 

than 2°C. In the winter, the surface temperature of the 
paint-coated pavement is slightly lower than that of 
the conventional one even below the freezing point 
(Figure 7), and it may result in the delay of snowmelt. 

Figure 8 shows the energy balance of the 
conventional and paint-coated asphalt pavements. 
The sensible heat flux (H) is estimated from Louis’s 
scheme (Louis, 1979) with the roughness length 
z0=3x10-4 m, which was verified to give a satisfactory 
estimate. The heat flux into the ground (G) is derived 
by subtracting H from the measured net radiation (Rn). 
The surface albedo was referred to the result of 
laboratory experiments. It is found that a significant 
reduction can be found by applying high albedo 
coatings for the sensible heat flux and the heat flux 
into the ground. 
 
3. IMACT ON URBAN ATMOSPHERE 
 
3.1 Outline 

The high albedo pavement reflects more solar 
radiation back to the sky. If it is widely used for the 
urban canopy floor, surrounding buildings absorb part 
of the reflected solar radiation, which in turn could 
increase the wall temperature and sensible heat 
fluxes from the wall. Thus, the impact of introducing 
high albedo pavement on the overall canopy albedo 
and energy balance was investigated by applying a 
canopy energy balance model developed by Kanda et 
al. (2004a) to a real urban canopy setting. The 
dependency of the overall canopy albedo, sensible 
heat flux and canopy surface temperature on the 
canopy configuration and floor albedo was 
investigated, and the efficiency of introducing the high 
albedo pavement is discussed. 
 
3.2 Model explanation 

The energy balance model used in this study is the 
simple urban energy balance model for meso-cale 
simulations (SUMM), which consists of a 3-D 
theoretical radiation scheme (Kanda et al., 2004b) and 
the conventional heat transfer expression that uses a 
network of resistances. SUMM allows one to readily 
calculate the energy balance and surface temperature 
at each face of the urban canopy (i.e., roof, floor, and 
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Fig.8. Energy balance of (a) conventional pavement 

and (b) paint-coated pavement for August, 2002. 
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higher incident solar radiation reflected from the 
canopy floor. CA for α=0.5 is much dependent on the 
plane area index than that for α=0.1. If it is assumed 
that the same upper boundary condition holds for any 
canopy configurations, it can be said that smaller 
plane area index and frontal area index become 
effective in increasing overall canopy albedo when the 
canopy floor albedo is higher. 
 
4. IMACT ON HUMAN THERMAL SENSATION 
 

The high albedo pavement is considered to reduce 
the air temperature near the ground and the longwave 
radiation emitted from the pavement surface. On the 
other hand, it must be considered that the pavement 
surface reflects more solar radiation, and it may 
increase the thermal stress on the human body 
walking or standing on it. Thus, a preliminary test was 
carried out to reveal the impact on the thermal 
sensation by letting 6 volunteers stand on the 
paint-coated pavement and conventional pavement 
under the summer outdoor environment. 

Thermal sensation, comfort sensation and 
sensation regarding the thermal impact on the feet 
were declared. WBGT was also monitored during the 
test. It is found that the high albedo pavement gives 
cooler sensation than the conventional one, which 
may be resulted from the mitigated heat conduction 
through the feet and the upward longwave radiation. 
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Fig.9. Total sensible heat flux from whole canopy layer 

with H=10.5m and W=10m. (Left: L=10m, right: L=20m) 
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Fig.10. Averaged surface temperature of wall and floor 
with H=10.5m and W=10m. (Left: L=10m, right: L=20m) 
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Fig.11. Total sensible heat flux (TSH) from whole 
canopy layer (W=10m, L and H are variable). 
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